
Drug Discovery Today d Volume 27, Number 7 d July 2022 REVIEWS

K
EY

N
O
TE

(G
R
EEN

)

Deep learning in target prediction and

drug repositioning: Recent advances and

challenges

Jun-Lin Yu 1, Qing-Qing Dai 1, Guo-Bo Li ⇑
Key Laboratory of Drug-Targeting and Drug Delivery System of the Educatio
n Ministry and Sichuan Province, Sichuan Engineering Laboratory for
Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,
Chengdu 610041, China
Drug repositioning is an attractive strategy for discovering new therapeutic uses for approved or
investigational drugs, with potentially shorter development timelines and lower development costs.
Various computational methods have been used in drug repositioning, promoting the efficiency and
success rates of this approach. Recently, deep learning (DL) has attracted wide attention for its potential
in target prediction and drug repositioning. Here, we provide an overview of the basic principles of
commonly used DL architectures and their applications in target prediction and drug repositioning,
and discuss possible ways of dealing with current challenges to help achieve its expected potential for
drug repositioning.
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Introduction
Drug repositioning is becoming an increasingly attractive direc-
tion in drug discovery and development because it involves
potentially shorter development timelines and lower develop-
ment costs compared with target-centric de novo drug discovery
and development.1,2 Success stories of drug repositioning are
increasing in number, which historically has been largely oppor-
tunistic and serendipitous.1,2 For example, sildenafil, originally
developed as an antihypertensive drug, was repurposed for erec-
tile dysfunction mainly based on retrospective clinical experi-
ence; thalidomide was repurposed by serendipity for multiple
myeloma erythema and erythema nodosum leprosum.2 In recent
decades, the development of relatively systematic approaches
has facilitated the identification of the right candidate for a given
indication. Notably, during the coronavirus disease 2019
(COVID-19) pandemic, several non-antiviral drugs, such as
leflunomide3,4 and baricitinib,5 have been repurposed by various
approaches as new treatments to participate in the battle against
⇑ Corresponding author.Li, G.-B. (liguobo@scu.edu.cn)
1 Co-first authors.
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COVID-19.6,7 Systematic drug repositioning approaches can be
categorized into computational approaches and experimental
approaches, both of which are frequently being used together.
Computational approaches offer a relatively quick and
resource-saving way to identify testable hypotheses that promote
drug repositioning.8,9

Various computational approaches have been established for
drug repositioning, including structure-based, ligand-based, and
data-driven approaches. Chen et al. pioneered the use of inverse
molecular docking, a structure-based approach, named
INVDOCK,10 for target prediction, leading to the development
of several upgraded structure-based methods and web servers,
such as TarFisDock,11 VinaMPI,12 idTarget,13 and iRAISE.14 These
methods have been successfully used for target prediction and
drug repositioning; for example, Dakshanamurthy et al. discov-
ered the antiparasitic drug mebendazole as a new inhibitor for
vascular endothelial growth factor receptor 2, an anticancer drug
target.15 Ligand chemical similarity has also been frequently used
1359-6446/� 2021 Elsevier Ltd. All rights reserved.
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TABLE 1

Examples of successful drug repositioning using DL approaches.

Approved or
investigational drug

Original indication
(target)

New indication (target) Method Comment Refs

Tourette syndrome
(dopamine D2 and
D3 receptor
antagonist)

NSCLC DNN Li et al. established a drug-repurposing approach
based on transcriptomic data and chemical
structures using DNN and identified Pimozide as a
possible candidate for treating NSCLC

29

Pimozide

Rheumatoid arthritis
(Janus kinase
inhibitor)

COVID-19 (AP2-
associated protein
kinase 1 and cyclin G-
associated kinase)

DNN Stebbing et al. reported baricitinib as potential
treatment for 2019-nCoV acute respiratory disease

30

Baricitinib

Anticancer (poly-
ADP-ribose
polymerase 1
inhibitor, PARP1)

COVID-19 (possibly
binds to N-terminal
domain of nucleocapsid
protein)

GCN Ge et al. indicated that mefuparib exhibited
effective inhibitory activity against SARS-CoV-2
replication and had anti-inflammatory effects

31

Mefuparib (CVL218)

Diabetes (c-Jun N-
terminal kinase
inhibitor)

Broad-spectrum
bactericidal antibiotic
(dissipating proton
motive force)

D-
MPNN

Stokes et al. discovered halicin as a new
bactericidal antibiotic against a phylogenetic
spectrum of pathogens by using trained D-MPNN
network

28

Halicin (SU3327)
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for target prediction. Keiser et al. proposed a similarity ensemble
approach to quantitatively group related protein targets based on
their ligand similarity encoded by Extended Connectivity Finger-
print (ECFP).16,17 This approach has resulted in several new drug-
target associations, demonstrating its effectiveness.17 Several 3D
similarity methods, such as ChemMapper18 and Gaussian
Ensemble Screening,19 have been established for target predic-
tion and drug repositioning. Pharmacophore, as an alternative
to the representation of essential features for a ligand binding
with its specific target receptor, has also been widely used for tar-
get prediction and drug repositioning.20 PharmMapper is the
most representative approach, which was developed as a user-
friendly, freely accessed web-server.21,22 By considering target-
specific features, a protein–ligand interaction fingerprinting-
based method, named IFPTarget,23 was developed that showed
improved prediction ability to retrieve known targets, and has
been successfully used to repurpose colchicine for targeting gly-
cine receptor alpha 3.23,24 Data-driven approaches have been
increasingly established for drug repositioning, for example,
based on clinical phenotypes, adverse event profiles, cheminfor-
matics, transcriptomic, proteomics or metabolomics data.25,26

For example, Campillos et al. proposed a phenotypic side-effect
similarity approach for drug repositioning, and experimentally
validated its feasibility to infer new molecular interactions and
exploit new uses of marketed drugs.25

DL is a fast-growing subfield of artificial intelligence (AI),
which uses various artificial neural network (NN) algorithms that
mimic human brain neurons to learn high-level abstractions
contained in data. Recent advances in DL methods have boosted
the evolution of drug discovery.27 Given their powerful learning
ability, they can effectively capture high-level hidden representa-
tions from various raw data, including heterogeneous data, and
show a state-of-the-art performance. Compared with traditional
machine-learning (ML) approaches, such as support vector
machine (SVM) and random forest (RF), DL approaches are cap-
able of learning more abstract information by building deep
architectures without manually selecting and tuning features.
Several successful drug repositioning cases were reported recently
(Table 1).28–31 For example, Li et al. presented a new deep NN
(DNN) with transcriptomic data and chemical structural infor-
mation, and identified pimozide, an antidyskinesia agent, as a
potential candidate for nonsmall cell lung cancer (NSCLC).
Stokes et al. adopted a directed message-passing NN (D-MPNN)
architecture capable of predicting compounds with antibacterial
activities, and successfully repurposed halicin (SU3327),28 a c-Jun
N-terminal kinase inhibitor, as a new bactericidal antibiotic
effectively against various Gram-negative pathogens, including
Acinetobacter baumannii, highlighting the utility of DL
approaches to exploit new space for drug repositioning.

In this review, we provide an overview of the basic under-
standing of commonly used DL architectures. Subsequently, we
summarize drug–target interaction (DTI)- and heterogeneous
network-based DL approaches for target prediction and drug
repositioning, and highlight their specific features, strengths
www.drugdiscoverytoday.com 1797
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FIGURE 1
The basic framework of (a) deep belief networks (DBN), (b) deep neural networks (DNNs), and (c) AutoEncoders (AEs).
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and weaknesses. Finally, we provide possible ways of addressing
current challenges to aid further efforts to exploit the full poten-
tial of DL in drug repositioning.
Overview of DL frameworks
A common DL architecture comprises a sequence of layers with
nonlinear processing units, each layer of which is trained on
an ensemble of key features from the output of the previous
layer. Herein we summarize six types of commonly used DL
framework: deep belief networks (DBNs), DNNs, autoencoders
(AEs), convolutional NNs (CNNs), recurrent NNs (RNNs), and
graph NNs (GNNs).
Deep belief networks
DBNs are generative NNs commonly used in image recognition
and generation (Fig. 1a). Generally, they comprise stacked
restricted Boltzmann machines (RBMs),32 which are structured
generative stochastic frameworks with two layers: a visible layer
and a hidden layer. The visible units V ¼ ðv1; v2; v3; :::; vmÞ, corre-
sponding to the input data, are connected to the hidden units
H ¼ ðh1;h2;h3; :::;hnÞ. All states of the units are binary (i.e., 0 or
1798 www.drugdiscoverytoday.com
1). An energy EðV ;HÞ is calculated to estimate the probability
of the input using Eq. (1):

E V ;Hð Þ ¼ �WVH � BV � CH;

where W denotes the weight between two layers, V and H repre-
sent the states of the visible units and hidden units, respectively,
and B and C are the biases. The margin probability distribution
PðVÞ is calculated using Equation (2):

PðVÞ ¼P
H

e�EðV ;HÞ
S

S ¼P
V

P
He
�EðV;HÞ ð2Þ

where S is a normalization function to ensure that the probability
value is in the range of ð0;1Þ. The objective of the RBM is to
search for probability distribution PðVÞ that fits best with the
input data V so that the network can minimize the discrepancy
between the input and generated values.

Given that a single RBM might not fully represent the com-
plex information with binary units, DBNs were developed to
treat the hidden layer from the previous RBM as the visible layer
of the subsequent RBM. In such a way, the training parameters
can grow sharply. To relieve pressure on training cost and
improve the performance of DBNs, Hinton et al. proposed an
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unsupervised, layer-wise, greedy learning algorithm to search for
a proper set of initial parameters. This fine-tuning algorithm is
further used to optimize the parameters and yield the final pre-
dictive model.33

Deep neural networks
DNNs are multilayer perceptron (MLP) networks, also known as
multilayer fully connected NNs.34 They use several neurons to
learn high-level features from the data by emulating the way in
which the human brain works. The typical structure of DNN
comprises an input layer, more than two hidden layers, and an
output layer (Fig. 1b); each layer is connected to its following
layer, which comprises several perceptrons, namely neurons in
the NN. Once each neuron receives several input vectors, it per-
forms a dot-product computation between the input and corre-
sponding weights and then adds the bias term to produce the
weighted sum. Then, the weighted sum is fed into an activation
function, such as the sigmoid and rectified linear unit (ReLU), to
perform nonlinear transformation, which eventually gives the
final output of this neuron (Fig. 1b).

The purpose of DNN training is to obtain optimal values of
the learnable parameters (e.g., weights and bias terms) by using
large, labeled data sets. During the training process, the parame-
ters can be adjusted based on the backpropagation (BP) algo-
rithm to minimize errors between the real labels and the
predicted results. Compared with traditional ML methods, DNNs
can capture high-level, abstract, and complex features from orig-
inal data without data preprocessing and feature extraction, and
show improved prediction performance. Usually, DNNs contain-
ing more hidden layers could capture more essential features
from input data. However, with the increasing number of hidden
layers, there are hundreds of millions or even billions of trainable
parameters, which increases the computation cost and possibly
cause gradient vanishing issues. Another limitation of DNNs is
that they require numerous data for model training to avoid
overfitting and local optimality; thus, they are not suitable for
small-sample learning.

Autoencoders
Originally, AEs were developed from a one-hidden-layer MLP
and utilized to reduce the dimension of the feature space.35 A
basic AE includes an input layer, a hidden layer and an output
layer, which conceptually form the encoder and decoder
(Fig. 1c). First, an AE takes X ¼ ðx1; x2; x3; :::; xNiÞ as input and
exploits the encoder to map the input vector into the low-
dimension representation Y ¼ ðy1; y2; y3; :::; yNh

Þ. Then, the deco-

der reconstructs the compressed feature Y to obtain the output
Z ¼ ðz1; z2; z3; :::; zNoÞ, the dimension of which equals that of
the initial input X. Ni, No, and Nh are the unit numbers of each
layer respectively and Ni ¼ No > Nh.

Y ¼ FðWiXþ biÞ ð3Þ

Z ¼ GðWoY þ boÞ ð4Þ
The computation process for the encoder and decoder is

described by Eqs. (3) and (4), respectively, in which F and G rep-
resent nonlinear activation functions, Wi and Wo denote the
weight matrices, bi and bo are bias vectors. During the learning
process, all parameters (e.g., Wi and bi) are optimized to mini-
mize the reconstruction error e by a BP algorithm, in which the
classical loss function square error L is often adopted (Eq. (5)).

e ¼ 1
Ni

PNi
j¼1Lðxj; zjÞ

Lðx; zÞ ¼ jjx� zjj2
ð5Þ

However, when it comes to complex inputs, basic AEs might
be unable to encode the information from the inputs. As a result,
several variants of AE with different characteristics have been
developed, such as denoising AE (DAE),36 variational AE (VAE),
and sparse AE (SAE); of these, DAE is relatively more popular.
Compared with basic AEs, DAE has a special layer inserted
between the input layer and hidden layer (Fig. 1c). The addi-
tional layer is used to generate noise for the input X via sparsity
limitation or a dropout scheme (i.e., randomly changing input
values to 0). Next, the disturbed input X0 ¼ ðx1; x2; x3; :::;
0; :::; xNiÞ goes through the same encoding and decoding steps
of a basic AE to give the output Z. Importantly, DAE is able to
rebuild the original input after training by minimizing the differ-
ence between Z and X instead of X0.
Convolutional neural networks
CNNs are feedforward NNs inspired by animal visual cortex
research.37 They use a set of convolution filters to simulate the
response of visual cells and have led to remarkable progress in
the computer vision field. A basic CNN comprises a series of con-
volution layers, pooling layers, and several fully connected layers
with images as input (Fig. 2a). The convolution layer, which is
the key part of CNN, is used to extract various feature maps of
the input image by using convolutional filters. Applying several
different convolutional filters in a convolution layer can generate
different feature maps, which represent various kinds of charac-
teristic of the input image, such as vertical features, horizontal
features, and edge features. Fig. 2b illustrates how to yield a fea-
ture map by using the convolution operation. When the filter is
moved at each location of the input image, an element-wise pro-
duct between each source pixel and each element of the filter is
performed; the results are then summed up to yield the new pixel
value in the corresponding position of the output feature map.
Generally, to enhance the nonlinear ability of CNN, the activa-
tion function is introduced to transform the output from the
convolutional layer. There are two main features in the convolu-
tional layer37: the weights are shared in the same feature map
and the local connectivity is preserved by learning correlations
among neighboring pixels. Both of these help reduce the number
of learnable parameters and achieve the translation invariance of
the input image.

Subsequently, the pooling layer is set to achieve spatial invari-
ance by reducing the dimensionality of feature maps and the
number of parameters (Fig. 2c).38 For a pooling layer, there are
no trainable parameters and the number of output feature maps
remains unchanged. In particular, max pooling and average
pooling are the most common strategies for subsampling.39 For
example, after applying a max-pooling operation, a feature
map with the size of 4 � 4 can be downsampled into the new fea-
ture map with a size of 2 � 2 by selecting the maximum value
over the 2 � 2 pooling window (Fig. 2c).
www.drugdiscoverytoday.com 1799
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FIGURE 2
The convolutional neural network (CNN) architecture. (a) The basic CNN framework. (b) Examples of three feature maps developed by using three different
convolution filters, where � represents the convolution operation; the three extracted feature maps contain vertical features, horizontal features, and edge
features, respectively. (c) Convolution operation to generate a feature map with a filter size of 3*3: when the filter is moved at each location of the input
image, an element-wise product between each source pixel and each element of the filter is performed; these are then summed to yield the new pixel value
in the corresponding position of the output feature map.
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The final module in a CNN is a multilayer fully connected NN,
in which each neuron in current layer is connected to all the out-
puts of the previous layer. It is responsible for performing high-
level reasoning on these output feature maps. Notably the fea-
ture maps need to convert into the feature vector before entering
fully connected layers.

Recurrent neural networks
RNNs are artificial NNs for handling sequential data by introduc-
ing internal memory units,40 and have been used successfully in
natural language processing (NLP). The basic RNN model
includes the input layer, the hidden layer and the output layer
(Fig. 3a). It receives a sequence X ¼ ðx1; x2; � � � ; xt�1; xt ; xtþ1; � � �Þ
as the input, where xt is the word vector at step t, and then out-
puts the corresponding sequence O ¼ ðo1; o2; � � � ; ot�1, ot , otþ1, � � �Þ
by using the internal units. The output vector ot at time step t is
computed using Eq. (6):

ht ¼ f ðUxt þWht�1Þ ð6Þ

Ot ¼ gðVhtÞ
where U, W, and V are the weight matrices, f and g denote non-
linear activation functions, and ht represents the hidden state of
the step t, also known as the memorial unit. In theory, ht captures
all the learned features from the forward sequence by involving
the current input xt and previous hidden state ht�1. Different from
other regular DL models, the output Ot at the step t is not only
dependent on current input (xt ), but also correlated with the prior
information (ht�1). Therefore, RNN is good at processing sequen-
tial data, such as text and time series data.

When learning the long-term dependency of long sentences,
the basic RNN suffers from gradient-vanishing and explosion
problems. To overcome these limitations, several RNN variants
have been developed, such as long-short-term memory (LSTM)41

and the gated recurrent unit (GRU).42 LSTM uses three gates (the
input gate, output gate and forget gate) to decide what to keep in
memory and what to discard; and it adds the memory unit to
store the information before passing to the next unit. This effec-
tively addresses the issue of gradient vanishing when capturing
long-term dependencies. Different from LSTM, GRU solves the
long-term dependency problem by adopting the reset gate and
the update gate to control the flow of information entering the
unit. In addition, bidirectional RNNs (Bi-RNNs),43 such as bidi-
rectional LSTM (Bi-LSTM),44 are proposed to capture the feature
dependency of sequence data. In forward and backward direc-
tions, the concatenation of the forward and backward hidden

states [ht
!
, ht

 
] at step t is fed into the next hidden unit to update

htþ1. The current state of Bi-RNN not only contains long-term
dependencies from previous time steps, but also considers the
future information of sequences. Bi-RNN has been demonstrated
to have better prediction accuracy compared with basic
RNNs.43,45

Graph neural networks
To solve the problem of loss of topological information for
graph-structure data by NNs, GNN was pioneered by Gori and
Scarselli as an effective tool to directly process graph-structure
data.46–47 Currently, GNN has been widely used in various fields,
such as chemistry, natural language, and social networks. In the
architecture of GNN, a graph G is treated as a pair of nodes set N
and edges set E, where nodes denote the objects or concepts in
the graph representation and edges denote their relationships
(Fig. 3b). Each node n is connected to its neighbor nodes (ne
[n]) by edges and assigned with a label ln containing feature infor-
mation. In such a network, a state vector sn is used to describe the
state of the instance corresponding to each node n (Fig. 3b). It is
intuitively influenced by the neighbor nodes ne[n] and mathe-
matically represented as the solution of Eq. (7) (for nonpositional
graphs),

sn ¼
X

u2ne½n�
f wðln; su; luÞ; n 2 N ð7Þ

where w is a set of parameters and the transition function f w is
used to explain the impacts of the neighbor nodes. Given the
states and the label information, the output on could be denoted
as Eq. (8):

on ¼ gwðsn; lnÞ; n 2 N ð8Þ

where gw is the output function. Originally, the transition func-
tion f w and output function gw were implemented by feedforward
NNs (FNNs).

The above-described DL architectures have attracted attention
for their potential in target prediction and drug repositioning.
They have the advantage of dealing with chemical space or fea-
ture space, and could capture connotative representations in
DTIs/drug–target associations, compared with traditional
computer-aided drug design methods, such as molecular docking
and pharmacophore modelling. However, how to select the
appropriate DL architecture to treat different data forms and tar-
get problems remains an open question. The following sum-
maries and discussions of recently reported DL approaches for
drug repositioning will be useful to promote thinking of this
state-of-the-art technology in drug discovery.

Drug–target interaction-based DL approaches
DTIs are direct, relatively uniform pieces of information that can
be used for establishing predictive models to identify new DTIs
and eventually achieve drug discovery and drug repositioning
tasks. Most previous ML methods (e.g., energy-component,
empirical, and knowledge-based scoring functions)48 were estab-
lished to predict DTIs by using explicit rules to describe the pro-
tein–ligand interaction modes. In recent years, several different
DL approaches have been developed for DTI prediction by learn-
ing high-level implicit features from various engineered data.
These DL approaches are summarized and compared according
to the two types of DTI data form: complex-based inputs and
noncomplex-based inputs.

Complex-based inputs
Complex-based inputs refer to those directly encoded from pro-
tein–ligand complex structures, such as feature-embedded 3D
grid representations and graph representations. DL NNs are usu-
ally established to learn from complex-based inputs to predict
protein–ligand-binding affinity. Combined with molecular dock-
ing and molecular dynamics methods, the established DLmodels
could work as scoring functions to reassess the predicted binding
www.drugdiscoverytoday.com 1801
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FIGURE 3
Recurrent neural networks (RNNs) and graph neural networks (GNNs). (a) The basic RNN architecture comprises an input layer, hidden layer, and output layer.
X represents the input sequence, H is the hidden state containing all the extracted features from X, and O denotes the predicted output given input X. U ,
W , and V are the weight matrixes for the transition from X to H, H to H, and H to O, respectively. (b) General computation process of GNNs.
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poses and use for drug repositioning (Fig. 4a). This is expected to
enhance the predictive ability and efficiency of drug reposition-
ing. The core DL approaches are discussed herein.

Ragoza et al. proposed a 3DCNN scoring model for pose pre-
diction and virtual screening.51 In their work, they adopted 3D
grid representations to describe the protein–ligand complexes.
They treated the complex structures as 3D images with several
channels that denoted different features according to smina
atom types.52 In a specific channel, each grid stored correspond-
ing atom type information and treated a given atom as a density
distribution related to its van der Waals radius. With this form of
1802 www.drugdiscoverytoday.com
molecular characterization, the complex features were processed
by a basic 3DCNN model to discriminate whether the protein–li-
gand interaction takes place. This model outperformed conven-
tional docking scoring (e.g., Vina-Score) and ML methods (e.g.,
RF-Score and NNScore) when tested on CSAR-NRC and DUD-E
data sets.

With more efforts focussed on the model construction of
3DCNN, Jiménez et al. developed a similar DL approach, named
KDEEP, to predict protein–ligand-binding affinity.53 They used
voxel occupancies to represent various features, including seven
atom types and excluded volume,54 and conducted data augmen-
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FIGURE 4
(a) General pipeline of drug repositioning with deep learning (DL) frameworks using complex-based inputs. Two representative DL approaches: (b)
DeepAtom49 and (c) InteractionNet.50
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tation by rotating the complex to deal with the problem related
to position sensitivity. Moreover, they improved model con-
struction by introducing SqueezeNet,55 which uses fewer param-
eters but has comparable performance to some typical networks
(e.g., AlexNet56when applied for image recognition. The testing
results indicated that KDEEP achieved better predictive ability
than many traditional scoring functions (e.g., RF-Score and X-
Score).

Inspired by light-weight networks (e.g., Xception,57 Mol-
bileNet,58,59 and ShuffleNet60,61), Rezaei et al. built a new archi-
tecture named DeepAtom to balance the performance and
complexity of the model (Fig. 4b).49 The core part of DeepAtom
lies in the 3D shuffle group, which comprises stacked 3D convo-
lutional layers with small kernel sizes and strides; this enables a
decrease in the parameter number but increased model depth
and complexity. In addition, the authors adopted occupancy
descriptors54 and further considered pharmacophore-like Arpeg-
gio atom types.62 By testing on PDBbind, DeepAtom outper-
formed the predictive ability of other traditional scoring
functions and related DLmethods (e.g., Pafncy). The authors also
highlighted that DeepAtom has the ability to generalize protein–
ligand interaction information by the use of moderate-level atom
www.drugdiscoverytoday.com 1803
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features, suggesting that accurate representation of protein–li-
gand interactions will be helpful to improve model performance.

Different than those approaches mentioned above, Feinberg
et al. used basic information of atoms, bonds and distances,
instead of other complex knowledge-based features. They pro-
posed PotentialNet,63 a GNN network for protein–ligand affinity
and molecule property prediction. Motivated by the distance
matrix, they developed a novel adjacency matrix in the form of
a tensor with shape [N, N, Net], where N denotes the total atom
number in the complex and Net the number of edge types, so
that the matrix is able to include both covalent bond informa-
tion and noncovalent interactions. PotentialNet is a spatial
graph convolutional network with GRU (frequently used in
gated GNNs64) as the update function. It first took two steps to
update the node features, including covalent-only propagation
and noncovalent and covalent propagation. Then, the ligand
graph went through the graph gather layer and FC layers to
achieve the predictive affinity or molecular properties. Poten-
tialNet was observed to have stronger predictive ability than
RF-Score and X-Score when used for binding affinity prediction.
Meanwhile, variants of PotentialNet were also demonstrated to
be state-of-the-art methods for the prediction of molecule
properties.

Similarly, Lim et al. constructed a GNN-based framework to
predict DTIs,65 which directly extracted the spatial information
from the binding poses. To represent the structural information,
they adopted two adjacent matrices, including A1 (denoting
purely covalent interactions) and A2 (denoting covalent interac-
tions and noncovalent intermolecular interactions), and node
feature x for protein and ligand. The model dealt with the node
feature x in two different ways according to A1 and A2 to give
two continually updated node features, x1 and x2, respectively;
the difference between the monomers and the complex was rep-
resented as the discrepancy between x1 and x2. Most impor-
tantly, during the whole training process, a distance-aware
graph attention mechanism was applied to distinguish the con-
tribution of different neighbor nodes to a given node and put
more emphasis on the residues with less distance from the
ligand. Additionally, to enhance the performance of the model,
the gate mechanism was used to embed the node features from
the previous layer. When tested on the DUD-E and PDBbind data
sets, this method outperformed several previously reported DL
models.

Furthermore, Cho et al. proposed another GNN architecture,
InteractionNet,50 to predict the dissociation constants between
ligands and proteins. Enlightened by PotentialNet, the covalent
and noncovalent adjacency matrices were used to represent the
protein–ligand complex. Distinct from PotentialNet, they used
two consecutive graph convolution layers [i.e., covalent convolu-
tion (CV[C]) and noncovalent convolution layers (CV[NC])] to
update the node features according to covalent and noncovalent
adjacency matrices, respectively (Fig. 4c). In addition, a global
pooling layer was exploited to integrate the node features instead
of the graph gather layer (in PotentialNet). Based on the refined
set of the PDBbind v2018 data set, the authors performed 20-fold
cross-validated experiments to train the model and verify the sig-
nificance of the CV[NC] layer. The well-trained model showed bet-
ter performance than PotentialNet. The authors also tried layer-
1804 www.drugdiscoverytoday.com
wise relevance propagation (LRP) to assess the prediction results
in human terms with knowledge-based analysis. Notably, with
the LRP and visualization process,66 InteractionNet successfully
distinguished the functional groups from the input data and
identified actual hydrogen-bond interactions between protein
and ligand, implying its explanation ability and reliability.
Owing to the superior protein–ligand-binding affinity predic-
tion, we anticipate more applications of these DL approaches
in drug discovery and repositioning.

Noncomplex-based inputs
Noncomplex-based inputs refer to those from separated target
information and ligand/drug information. Therefore, in contrast
to complex-based inputs, this input manner does not require
protein–ligand complex structures or atomic-level interaction
models. To handle this kind of input, current NNs are designed
to learn the features of proteins and ligands in parallel, and, most
commonly, the two sets of learned features are concatenated and
then passed to the FC layers to learn their interaction informa-
tion and to give a result according to the task-specific label val-
ues. In other words, given the ligand and target information,
the trained DL models will predict whether the ligand has inter-
actions with the target.

For example, Wen et al. adapted a DBN architecture called
DeepDTIs to predict protein–ligand binding,70 in which ECFP
was used to encode ligand and sequence composition descriptors
was used to represent protein. Based on the DrugBank and EDTPs
data sets, DeepDTIs involved a two-step training process: greedy
layer-wise unsupervised training and supervised fine-tuning
methods. Consequently, DeepDTIs showed a good predictive
ability, which outperformed traditional ML methods, including
Bernoulli Naive Bayesian, Decision Trees (DT), and RF in the used
test set.

Öztürk et al. reported DeepDTA,67 a CNN framework, to pre-
dict drug–target-binding affinity by using separated amino acid
sequence information of targets and SMILES information of
drugs. DeepDTA comprises two separate CNN blocks to learn rep-
resentations from protein sequences and drug SMILES strings,
respectively (Fig. 5a). Three consecutive 1D-convolutional layers
followed by a max-pooling layer were used to obtain advanced
representations of targets and drugs, which then were concate-
nated and fed into three core FC layers (Fig. 5a). The activation
function ReLU and the loss function MSE were applied to mini-
mize the difference between the experimental binding affinity
values and the prediction values. The established models were
evaluated on two benchmark data sets: Kinase data set Davis
and KIBA data set, which showed superior performance in
drug–target-binding affinity, outperforming the KronRLS and
SimBoost algorithms.

Similarly, Karimi et al. developed a unified RNN-CNN net-
work,71 named DeepAffinity, to solve the regression problem of
binding affinity prediction. They used pretrained RNNs for data
initialization and appended the CNN model comprising a 1D
convolution layer and a max-pooling layer to abstract high-
level features. The outputs of the CNNs for targets and com-
pounds were concatenated and fed into two fully connected lay-
ers. Pretrained RNN initializations were demonstrated to have
important roles in the non-convex training process. Notably,
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FIGURE 5
Representative deep learning (DL) frameworks using noncomplex-based inputs: (a) DeepDTA,67 (b) graph convolutional neural network (CNN),68 and (c)
DrugVQA.69
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the authors embedded attention mechanisms in the RNN-CNN
network to enhance the model interpretability. This model
showed better performance in binding affinity prediction com-
pared with RF and the separated RNN and CNN models, and also
had good performance in target selectivity prediction, suggesting
its potential in drug repositioning.
Torng et al. constructed a binary-classified Graph CNN frame-
work with unsupervised pocket graph AE to predict DTIs.68 Dif-
ferent from the regular GNN architectures described above, the
authors used the pocket graph and ligand graph separately as
inputs. The pocket graph AE was pretrained to learn essential
embeddings of protein pocket, followed by using the graph con-
www.drugdiscoverytoday.com 1805
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volutional layers to further extract key information for protein
and ligand graphs (Fig. 5b). The extracted features of protein
and ligand were joined to an interaction layer to learn their inter-
action information. The testing results indicated that Graph
CNN had better performance than 3DCNN, Vina, RF-Score, and
NNscore.

Recently, to consider 3D spatial information, Zheng et al. pro-
posed a novel network named DrugVQA using a quasi-visual
question answering system to predict drug–protein interac-
tions.69 Uniquely, 2D pairwise distance maps generated from
3D protein structures were adopted to balance the lack of 3D spa-
tial information and low efficacy. Dynamic attentive CNN was
also designed to process the protein features and determine the
importance of each amino acid (Fig. 5c). For drug molecules,
the authors used self-attentive BiLSTM to encode the SMILES
strings into 2D embedding matrices (Fig. 5c). The protein and
ligand features were concatenated and fed into the classification
layer to get a result. By testing on different benchmark sets,
DrugVQA had superior performance compared with ML scoring
functions (e.g., NNscore and RF-score), docking-based methods
(e.g., Vina) and DL-based methods (e.g., 3D-CNN, AtomNet,
PocketGCN, and GNN). This work revealed the remarkable capa-
bility of the distance map representation for use with protein tar-
gets and the robustness of the unique model.

In addition, Stokes et al. established a D-MPNN-based model
by building a molecular representation based on a specific prop-
erty (i.e., inhibition of the growth of Escherichia coli) using a
directed message-passing approach.28 They trained the model
using 2335 diverse molecules that inhibited the growth of
E. coli, and augmented the model with several molecular features,
hyperparameter optimization, and ensembling. They finally used
the model against multiple chemical libraries to identify poten-
tial lead compounds with activity against E. coli. According to
the predicted score and experimental validation of the model,
the authors successfully identified Halicin, a c-Jun N-terminal
kinase inhibitor, as a new broad-spectrum antibacterial com-
pound. This work highlights the potential of DL methods in drug
repositioning.

The above-mentioned examples exemplify the importance of
developing specific DL architectures together with sophisticated
feature engineering skills for DTI prediction tasks. Furthermore,
efficient models, such as Graph CNN and DrugVQA, emphasize
the accurate and effective description of DTIs, which is likely
to reduce computation time and improve model interpretability,
and will be appropriate for further investigations.
Heterogeneous network-based DL approaches
In addition to the above-described data forms of DTIs, there are
several pharmacological, preclinical, or clinical data forms, such
as side effects, phenotypic and genotypic attributes, electronic
health records (EHRs), patient surveys, clinical trial data, and
postmarketing surveillance data, which constitute complicate
heterogeneous networks, and can also be used to establish pre-
dictive models using DL approaches for drug repositioning. This
is mainly based on similarity hypothesis, that is, that similar
drugs have similar target profiles or similar phenotypes (e.g., dis-
eases or side effects). In such graph-structured heterogeneous
1806 www.drugdiscoverytoday.com
networks, nodes are usually represented by drugs, diseases, tar-
gets, genes, side effects, and others, and edges are denoted as
the relationships between two nodes (e.g., chemical similarities
between two drugs, interactions between drug and target, or
underlying mechanisms of a drug to a disease). Various DL
approaches have been established based on these heterogeneous
data for drug repositioning. Despite the diversified data sources,
these approaches are generally used to predict drug–target (gene)
and drug–disease associations, as discussed below.

Predicting new drug–target (gene) associations
Several DL approaches have been established by integrating
drug–target associations, drug–drug interactions, target–target
interactions, chemical similarities, and/or target sequence simi-
larities to extract underlying features to discover new drug–target
(gene) associations. For instance, Eslami Manoochehri and Nour-
ani proposed a DNN-based framework to predict new drug–target
associations based on drug chemical similarity and protein
sequence similarity (Fig. 6a).72 They first constructed a DTI net-
work by exploiting known DTIs, drug chemical similarities, and
protein sequence similarities. For each drug–target pair, they
then used a subgraph extraction algorithm to extract subgraphs
from the interaction network, with the aim to represent the
topological environment around each drug–target pair. These
subgraphs were encoded into embedding vectors and then fed
into DNNs to learn the graph topological features to predict
unknown DTIs. Compared with four baseline methods (LMNII,
CMF, HNM and NetLapRLS), this framework achieved higher
performance in terms of area under the receiver operating char-
acteristic (AUROC) and area under the precision-recall curve
(AUPRC).

Zong et al. added disease-related information (i.e., drug–dis-
ease and target–disease associations) to enrich the drug–target
network, generating a drug–target–disease tripartite network.75

Within such a tripartite network, they identified potential DTIs
by adopting a DL algorithm called DeepWalk, which vectorized
the nodes (e.g., drugs and targets) based on the local latent topol-
ogy information and then gave the topological similarity for
each drug–drug or target–target pair. Compared with the drug–
target bipartite networks, their method showed improved perfor-
mance, highlighting the importance of the additional disease-
related information. Furthermore, they proved that using net-
work topology to compute similarity between nodes outper-
formed those models based on drug chemical similarity and
protein sequence similarity.

To enrich and understand the relationship between drugs and
targets more fully, Peng et al. additionally integrated other types
of data, such as drug–side-effect associations to characterize
drugs and targets, and developed a CNN-based model named
DTI-CNN to predict DTIs (Fig. 6b).73 They constructed four
drug-related networks (i.e., drug structural similarity network,
drug–drug interaction network, drug–disease association net-
work, and drug–side-effect association network) and three
protein-related networks (i.e., protein sequence similarity net-
work, protein–protein interaction network, and protein–disease
association network). These similarity networks were represented
separately as similarity matrices of drugs and targets, and further
encoded into the advanced feature matrices by the random walk



Drug–target 
network

Drug similarities, drug–drug, 
drug–disease, drug–side-effect, 

target similarities, target–target, 
target–disease

DNN

CNN

0 0 1 1 0
0 0 1 0 0
1 1 0 1 1
1 0 1 0 0
0 0 1 0 0

Similarity matrices 
of targets

Similarity matrices 
of drugs

Matrix 
representation
of drug features

DAE

DAE

Matrix 
representation

of protein features

Integrated
chemical–gene–
pathway graph

Graph 
convolutional 

encoder

Tensor 
decomposition 

decoder

GNN

Chemical 
embedding

matrix

Gene
embedding

matrix

Chemical 
Gene

Pathway

Nodes: one-hot vectors

Edges: adjacent matrices

…

Adjacent matrices Embedding 
feature 
vectors

Several subgraphs

(b) DTI-CNN

(c) CGINet

Drug Target GeneDrug side-effectDisease

Interaction Similarity

Pathway

(a) DTI-DNN

Predicting drug–target(gene) associations Predicting drug–disease 
associations

Drug Discovery Today

FIGURE 6
Representative deep learning (DL) frameworks for drug–target (gene) association prediction: (a) drug–target interaction (DTI) deep neural network (DTI-
DNN),72 (b) DTI-convolutional neural network (CNN),73 and (c) CGINet.74

K
EY

N
O
TE

(G
R
EE

N
)

Drug Discovery Today d Volume 27, Number 7 d July 2022 KEYNOTE (GREEN)

www.drugdiscoverytoday.com 1807



K
EY

N
O
TE

(G
R
EEN

)

KEYNOTE (GREEN) Drug Discovery Today d Volume 27, Number 7 d July 2022
model to obtain the initial drug feature and target feature vec-
tors. Notably, DAE was used to reduce the dimensions of drugs
and target features to generate their final low-dimensional fea-
ture vectors, which were then concatenated and passed to the
CNN block to predict the probability of interaction between
drugs and targets. The evaluation results showed that DTI-CNN
achieved better performance than three traditional methods
(DTINet, CMF, and NRLMF), proving that it can effectively learn
the topological features and correlations between drugs and tar-
gets in the complicated network through layer-by-layer learning.

The interactions between chemicals and genes are also of sig-
nificance to find novel therapeutic targets for known drugs.
Wang et al. proposed a graph convolution network (GCN)-
based model, namely CGINet, to predict chemical–gene interac-
tions in an integrated multirelational graph (Fig. 6c).74 Those
subgraphs including chemical–chemical association graphs,
gene–gene association graphs, and chemical–pathway associa-
tion graphs; and gene–pathway association graphs and chemi-
cal–gene multi-interaction graphs were used to construct the
integrated multirelational graph, in which each node (i.e., chem-
icals, genes, and pathways) was represented as a one-hot vector,
and edges between nodes were denoted by an adjacency matrix.
Notably, GCN was trained on these binary association subgraphs
and the integrated multirelational graphs to learn more embed-
ding features of chemicals and genes, followed by using the ten-
sor decomposition decoder to compute the interaction
probability for a chemical–gene pair. The testing results sug-
gested that the CGINet model exhibited competitive perfor-
mances compared with the baseline models (DeepWalk, SVD,
and Laplacian), and had the ability to predict novel chemical–
gene interactions, which did not appear in the original graphs.

Predicting new drug–disease associations
Drug–disease associations provide important, direct information
for drug discovery and drug repositioning, whereas such associa-
tions are related to several aspects of data, such as disease–gene
associations, drug-exposure–gene expression data, and patients’
prescription information. On basis of such comprehensive infor-
mation, several DL approaches were established to search for new
drug–disease associations. For example, Liu et al. developed
HNet-DNN, a DNN network, to predict new drug–disease associ-
ations based on the features extracted from drug–disease hetero-
geneous networks (Fig. 7a).76 They collected drug chemical
structures and corresponding phenotypic attributes of diseases
to build the drug–drug similarity and disease–disease similarity
networks, and then combined these with drug–disease associa-
tions to establish a drug–disease heterogeneous network. The
topological features of drugs and diseases were extracted and
combined to train the DNN model for predicting potential
drug–disease associations. Compared with the straightforward
conjunction of raw features of drugs and diseases as the DNN
input, the extracted topological features were markedly con-
densed and informative, improving the prediction performance.
The evaluation results on the PREDICT data set showed that
HNet-DNN achieved state-of-the-art performance and outper-
formed several traditional network-based prediction methods
(e.g., LR, SVM, and RF). In case studies, the model successfully
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predicted some old drugs, such as cisplatin, ethinyl estradiol
and carboplatin, for the treatment of breast cancer, which further
verified its repositioning ability.

Jarada et al. also proposed a DNN-based framework, named
SNF-NN, to predict novel drug–disease associations in the drug–
disease heterogeneous network.77 Uniquely, they used several
forms of drug-related information (e.g., chemical structures, tar-
get protein sequences, and side effects) and disease-related infor-
mation (e.g., disease phenotypes, disease–gene associations, and
disease–miRNA associations) to construct different similarity net-
works of drugs and diseases. Before integrating the drug/disease
information, they introduced similarity selection and similarity
network fusion to reduce data redundancy and inconsistency.
Subsequently, highly informative feature vectors of drugs and
diseases were obtained from the integrated similarity networks,
and then concatenated to feed into the DNN model. SNF-NN
was evaluated on three benchmark data sets, which achieved
remarkable performance and showed comparable reliability and
robustness.

Furthermore, Li et al. introduced a novel DNN-based drug
repositioning approach for nonsmall cell lung cancer (NSCLC)
by using transcriptomic data and chemical structural informa-
tion from the MeSH and LINCS databases.29 This approach
included classifying and repurposing processes. In the classifying
process, the authors selected ‘Landmark genes’ and signaling
pathways as drug features to feed into DNN to classify each drug
into its corresponding therapeutic use category. In the repurpos-
ing process, they repurposed the misclassified antineoplastic
drugs that belonged to another therapeutic use category as candi-
dates for the treatment of NSCLC. According to the combina-
tional ranking of chemical structure similarity scores and
computed pathway activation scores, they successfully repur-
posed pimozide, an antidyskinesia agent, as a strong candidate
to treat NSCLC, which was validated by in vitro experiments
(Table 1).

Recently, more attempts to use CNN to extract the hidden fea-
ture representation of drug–disease associations for drug reposi-
tioning have been reported. For instance, Jiang et al. proposed
a CNN-based feature extraction method for identifying new
drug–disease associations, termed SKCNN (Fig. 7b).79 They
included drug chemical similarity/sigmoid kernel similarity, dis-
ease semantic similarity and sigmoid kernel similarity between
diseases from the drug–disease association network. Then, this
information was fused into one informative feature vector,
which comprehensively reflects the characteristics of the disease
and drugs. Taking the combined feature vectors of drugs and dis-
eases as input, CNN was trained to learn hidden feature represen-
tations of drug–disease associations, and then the traditional RF
classifier gave the predicted probability of a drug–disease associa-
tion. The evaluation results revealed that the prediction perfor-
mance of SKCNN was superior to the benchmark models
MBiRW, Drug-Net, HGBI, KBMF, and DRRs. Several drug candi-
dates predicted by their model for obesity and asthma were fur-
ther confirmed in the ClinicalTrials.gov database (CTD),
demonstrating the efficiency of SKCNN.

Xuan et al. integrated CNN and Bi-LSTM into a novel DL
framework named CBPred for discovering new drug–disease asso-
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ciations (Fig. 7c).78 On the one hand, the CNN module contin-
ued to learn the original representation of drug–disease pairs
from drug structural similarity, disease semantic similarity, and
drug–disease associations. On the other hand, given that the
multiple paths between drugs and diseases influence their associ-
ation possibility, the Bi-LSTM module was established to learn
path representations between drugs and diseases by taking the
multiple path sequences. Furthermore, the attention mechanism
at the path level was introduced to discriminate the different
contributions of the path for drug–disease associations. Subse-
quently, the two high-level feature vectors learned from CNN
and Bi-LSTM were sent to the softmax layer, respectively, to get
1810 www.drugdiscoverytoday.com
the weighted sum as the final predicted score of a drug–disease
association. The experimental results revealed CBPred could
not only explore the original and topological representations of
drug disease pairs more deeply, but also exhibited stronger pre-
dictive power compared with the baseline models. In addition,
in case studies, they confirmed that CBPred can discover poten-
tial new disease indications for drugs.

A novel computational model called SAEROF, developed by
combining SAE and rotation forest classifiers to predict drug–dis-
ease associations, was developed by Jiang et al. (Fig. 8a).80 Similar
to their previous work with SKCNN, they also extracted two
forms of drug similarity and disease similarity from the drug–dis-
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ease association network, but with the difference that the sig-
moid kernel similarity of drugs and diseases was replaced by
Gaussian interaction profile kernel similarity. Then, they used
SAE to learn meaningful feature representations of drugs and dis-
eases by taking the combined similarity descriptors of drugs and
diseases as input. Given that the rotation forest method has the
advantages of reducing overfitting problem, resisting noise, and
insensitivity to abnormal outliers, it was adopted as a classifier
to process the extracted features and then gave a predicted score
for a drug–disease association. Compared with SKCNN, SAEROF
can effectively learn relatively sparse features of drugs and dis-
eases because of the introduction of SAE, showing higher predic-
tion accuracy.

There have been also VAE-based deep-learning frameworks
reported for in silico drug repositioning, such as DeepDR pro-
posed by Zeng et al.81 In DeepDR (Fig. 8b), one drug–disease,
one drug–side-effect, one drug–target, one drug–drug interaction
network, and six drug–drug similarity networks were included.
Specially, they fused positive pointwise mutual information
(PPMI) matrices representing each network by using the multi-
modal deep AE (MDA) to obtain high-quality features of drugs.
Then, the learned drug features together with known drug–dis-
ease associations were fed into a collective VAE (cVAE) to infer
new drug-disease associations. Given that DeepDR captures com-
plex topological patterns across different data sources and effec-
tively overcomes the sparsity of drug–disease associations, it
achieved state-of-the-art performance and outperformed the
baseline methods (i.e., DTINet, KBMF, and SVM). DeepDR was
successfully applied for repurposing US Food and Drug Adminis-
tration (FDA)-approved drugs to treat Alzheimer’s disease (e.g.,
risperidone and aripiprazole) and Parkinson’s disease (e.g.,
methylphenidate and pergolide).

Ge et al. reported a data-driven drug repositioning framework
to discover drug candidates for coronavirus 2019 (COVID-19) by
combining GCN and statistical analysis techniques.31 They first
constructed a drug–target knowledge graph based on the drug
chemical structures, target sequences and their interactions.
Then, a network-based knowledge mining algorithm was used
to obtain a predicted list of drug candidates by capturing the hid-
den virus-related feature information from the knowledge net-
work. To improve the prediction accuracy, GCN was used to
gather and update the learned feature representation of each
node in the graph, which can fully exploit the network topology
information. Based on their proposed framework, they discov-
ered that mefuparib (CVL218), a poly-ADP-ribose polymerase 1
(PARP1) inhibitor, could be a potential therapeutic agent for
COVID-19 by blocking severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) replication revealed in vitro and vivo stud-
ies. Moreover, Gysi et al. also used GCN to help identify potential
therapeutic agents for COVID-1983; the designed GCN model
was trained on the heterogeneous graphs, which comprised pro-
tein–protein interactions, DTIs, disease–protein associations, and
drug–disease associations. Several existing drugs in clinical stud-
ies for the treatment of COVID-19 were successfully predicted,
such as chloroquine and ritonavir.

By integrating drug–exposure expression profiles and drug–
drug links information to find new drugs for breast cancer,84
Cui et al. established a GNN model called GraphRepur. They col-
lected the drug–exposure gene expression data of genes differen-
tially expressed in breast cancer cells to represent drug signatures,
and obtained links information between drugs (e.g., positive and
negative drugs for breast cancer) from the STITCH database,
including the drug–drug interaction, similarity, and activity.
Then, a drug–drug interaction graph was constructed based on
the above information, in which drug signatures were used as
the node features. GNN took the interaction graph as input
and, as output, the possibility of repurposing each drug for breast
cancer. By comparison, GraphRepur showed better performance,
outperforming previous state-of-the-art approaches and some
classic ML methods (e.g., DeepDR, GCN, SVM, and RF). The
high-ranked drugs have been validated as new approaches for
the treatment of breast cancer, further proving the effectiveness
of this method.

GNNmethods are mainly used for the prediction of molecular
interactions based on the direct similarity between interacting
nodes but fail to capture the indirect similarity,82 resulting in
the low utilization rate of molecular interaction networks.
Hence, Huang et al. injected skip similarity representing the
second-order molecular interaction into the GNN and developed
the prediction model SkipGNN (Fig. 8c),82 which integrates
direct similarity and skip similarity between molecules to predict
a variety of molecular interactions. They first used the original
molecular interaction network to construct the skip graph,
which represents the second-order molecular interaction net-
work containing the skip similarity. Then, they constructed
two GNNs based on the original graph and the skip graph,
respectively to update each node features. Notably, they aggre-
gated the corresponding node features learned from the original
graph and the skip graph through the designed iterative fusion
scheme to obtain the final feature representation of each node.
Subsequently, the features of two target nodes were combined
to feed into the FC layer as a binary classifier to output their
interaction probability. The authors found that skip similarity
allowed SkipGNN to capture more successfully the structure of
interaction networks, making more effective use of the molecular
interaction network. Evaluation results on four types of interac-
tion network showed that SkipGNN achieved remarkable and
robust performance even when the network was noisy and
highly incomplete.

In addition, real-world data (RWD) in healthcare, such as EHR,
clinical trial data and postmarketing surveillance data, have also
been considered promising data sources for drug repositioning.
For instance, Liu et al. established an efficient LSTM-based frame-
work to infer drug candidates for a given disease by analysing
patients’ diagnosis, prescription, and demographic informa-
tion.85 They first extracted a list of potential repurposing drug
ingredients from patient data for candidates screening. Then,
they selected three categories of patients’ observational data [de-
mographic characteristics (i.e., age and gender), diagnosis codes,
and prescription medication] to be fed into a LSTM-based model
with an attention mechanism to evaluate the drug treatment
effects on the disease outcome. Drugs with significant beneficial
effects are considered as repurposed drug candidates. Compar-
isons with several existing preclinical drug-repositioning meth-
www.drugdiscoverytoday.com 1811
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ods showed that the proposed framework performed better at
correcting biases and estimating treatment effects, and retaining
interpretability for recognizing important confounding. The
authors successfully identified several old drugs and drug combi-
nations with respect to coronary artery disease (CAD) by using
the proposed framework, which demonstrated the effectiveness
of their method in drug repurposing.

Challenges and perspectives
DL frameworks have unique and outstanding advantages over
traditional ML methods in handling drug repositioning tasks,
as described above, particularly in processing different types of
input data for drug repositioning according to the nature of their
architecture. For example, CNN shows superior performance in
processing image data, such as distance map and grid-style repre-
sentation; RNN is applied specifically to handle sequence data,
such as SMILES, fingerprints of ligand, and sequence of target
for DTI prediction; GNN aims to solve the problem of graph-
structure data, which is more suitable for identifying new entity
associations from complicated heterogeneous networks (e.g.,
drug–target/gene or drug–disease networks) compared with other
DL methods. Nevertheless, there is still room for improvement,
and challenges remain.

First, despite enough input data, the performance and accu-
racy of the DL frameworks largely suffer from unbalanced and
poor-quality input data. For example, a network designed to pre-
dict the binding affinity is commonly trained with the input
labels (e.g. Kd, IC50, or EC50 values) from different bioassays. Such
experimental values can be inconsistent in terms of different
experiment conditions and standards, and even some data might
be incorrect because of signal interference or other factors. More-
over, as for the network-based drug repositioning tasks, the estab-
lished networks (e.g., drug-related or disease-related) mainly rely
on large-scale data from publicly available databases and litera-
ture, in which the quality of data is not guaranteed and the data
set might be unbalanced because of the lack of negative samples
of drug–disease pairs. The predicting ability of network-based
drug repositioning models is also limited to the number of train-
ing data. How to choose high-quality input data and how to
make full use of the available drug–target–disease-related
resources (e.g., preclinical information, clinical trial information,
and postmarketing surveillance data) to enrich their feature
descriptors remain challenges. In our opinion, input data from
specialized or manually curated database are recommended,
and unclear or inconsistent data should be discarded, rather than
kept for the breadth of data.

Another challenge is the lack of fully appropriate and sophis-
ticated feature engineering methods, which is another crucial
factor influencing model performance. For instance, KDEEP is
designed to grasp the spatial relationships of the proteins and
ligands using 3D grid representation. However, there are signifi-
cant costs associated with the huge amount of dummy and use-
less grids, which slow the training process. DrugVQA provides an
1812 www.drugdiscoverytoday.com
efficient way to manage the 3D structure information representa-
tion by using distance mapping and achieves a desirable perfor-
mance. Deeper understanding of protein–ligand interactions
and use of multiple data forms will help obtain more reliable
engineering data. Furthermore, how to efficiently integrate these
multiple types of feature from diverse heterogeneous networks is
also a challenge for network-based methods. Some researchers
have proposed different feature fusion methods to obtain highly
informative feature representation. For instance, the multimodal
deep AE was used to integrate each network to obtain high-
quality features of drugs; the K-Nearest Neighbors algorithm
was also applied to consolidate the given subsets of drug-
related and disease-related similarity matrices into two compre-
hensive matrices for drug and disease. Thus, it is desirable to
engineer available data by probing intrinsic nature or associa-
tions to achieve model improvement.

Last but not least, although DL models have many advan-
tages, there are still problems during modeling. To enhance
model performance and search for the optimal hyperparameters
(e.g., learning rate, batch size, layer number, and nonlinear func-
tion), hyperparameter optimization is a necessary but especially
time-consuming step. Efficient optimization algorithms, such
as Bayesian Optimization,86–87 are able to boost the searching
process. In addition, the overfitting problem is still not com-
pletely overcome because of the high complexity of model archi-
tecture or the limited amount of data. Focusing on these points,
researchers need to develop more flexible models to adapt for
multiple tasks under different conditions. The lack of model
interpretability has always been considered as a limiting factor
for their use, such as in in drug-repositioning tasks. Recently,
attention mechanisms were proposed to provide explanations
of prediction results and enhance the learning ability of models.
Different DL models are suitable for different application tasks.
For drug repurposing and related tasks, the networks of DL mod-
els must be well designed to fit the protein and ligand system.
Fundamentally, to better solve drug reposition problems, more
efforts, such as on the basic theory of drug–target/disease associ-
ations and DL are necessary. We believe that the constant devel-
opment of new DL algorithms, coupled with advances or
achievements in structural biology, medicinal chemistry, bio-
chemistry, and other fields, will improve the efficiency of DL-
based target prediction and drug repositioning.
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